On a Problem for Isometric Mappings of S Posed by Th. M. Rassias

نویسندگان

  • ANUP BISWAS
  • PROSENJIT ROY
چکیده

In this article we prove the problem on isometric mappings of S posed by Th. M. Rassias. We prove that any map f : S → S, p ≥ n > 1, preserving two angles θ and mθ (mθ < π, m > 1) is an isometry. With the assumption of continuity we prove that any map f : S → S preserving an irrational angle is an isometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Points and Stability of the Cauchy Functional Equation in C*-Algebras

The stability problem of functional equations originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. M. ...

متن کامل

A Fixed Point Approach to the Stability of an Additive-Quadratic-Cubic-Quartic Functional Equation

The stability problem of functional equations is originated from a question of Ulam 1 concerning the stability of group homomorphisms. Hyers 2 gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki 3 for additive mappings and by Th. M. Rassias 4 for linear mappings by considering an unbounded Cauchy difference. The paper of Th. ...

متن کامل

Approximately Quadratic Mappings on Restricted Domains

Under what conditions does there exist a group homomorphism near an approximate group homomorphism? This question concerning the stability of group homomorphisms was posed by Ulam 1 . The case of approximately additive mappings was solved by Hyers 2 on Banach spaces. In 1950 Aoki 3 provided a generalization of the Hyers’ theorem for additive mappings and in 1978 Th. M. Rassias 4 generalized the...

متن کامل

J. M. Rassias Product-sum Stability of an Euler-lagrange Functional Equation

In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange quadratic mappings and the JMRassias “product-sum” stability, respectively. In this paper we introduce an Euler-Lagrange type quadratic functional equation and investigate the JMRassias ...

متن کامل

Asymptotic behavior of alternative Jensen and Jensen type functional equations

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings. In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive mappings. In 1982–2005 we established the Hyers–Ulam stability for the Ulam problem of linear and nonlinear mappings. In 1998 S.-M. Jung and in 2002–2005 the authors of this paper investigated the Hyers–Ulam stability of additive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009